
workshops.de

Workshop
 React Router

1

workshops.de

React Router

2

workshops.de

A SPA handles routing in most cases by itself.

A routing library helps with managing the routing

logic/state.

3

workshops.de

Frameworks like Next.js or Blitz.js handle routing

for us – it’s build into the framework.

4

workshops.de

Why / What you’ll learn

￫ How to define Routes in a declarative way

￫ Using react-router-dom to build a more complex application

5

workshops.de

The router maps URLs to components / screens

/books → <BookList />

6

workshops.de

React Router

7

workshops.de

React Router is a routing library for React.

It’s “just” React – everything is a component and

follows the principles we’ve learned so far.

8

https://v5.reactrouter.com/

workshops.de

The React Router Module

￫ Declarative routing for React

￫ Uses React elements to define routes

￫ Components of React Router in the react-router-dom module:

￫ npm install react-router-dom@5

npm install --save-dev @types/react-router-dom@5

￫ import {Router} from 'react-router-dom'

9

workshops.de

<Router />

Primary component of React Router. It keeps

your UI and the URL in sync.

10

workshops.de

Router Implementations

￫ <BrowserRouter /> for HTML5-History Routing

￫ <HashRouter /> for Hash-Routing (older browsers)

￫ <MemoryRouter /> for ReactNative and Tests

￫ <StaticRouter /> for ServerSideRendering
import {

 BrowserRouter as Router,

} from 'react-router-dom'

11

workshops.de

<code>Router Element In Action
Just wrap your App inside of your Router-Component

import {BrowserRouter as Router} from 'react-router-dom';

ReactDOM.render(
<Router>

 <App />
</Router>,

 document.getElementById('root')
);

12

workshops.de

<code>Router Element In Action
Just wrap your App inside of your Router-Component

import {BrowserRouter as Router} from 'react-router-dom';

ReactDOM.render(
<Router>

 <App />
</Router>,

 document.getElementById('root')
);

13

Needs to be at the top of the
component tree, as it
provides the routing context.

workshops.de

Route

14

workshops.de

A <Route /> is used to declaratively map routes

to your application's component hierarchy.

15

workshops.de

The Route Component

￫ Render some UI when a location matches the route's path

￫ Route Properties

￫ path

￫ exact

￫ strict

￫ component

import {

 Route,

} from 'react-router-dom'

16

workshops.de

<code>The Route Component
With <Route> you’re able to insert components on path-match

<main>
 <Route exact path="/"><Home /></Route>
 <Route path="/about"><About /></Route>
</main>

17

workshops.de

<Route path="/users/" component={User}/>

Route Property Path

path location.pathname matches?

/users/ /users/1 yes

/users/ /users/max yes

/users/ /users/max/profile/tip yes

18

workshops.de

<Route strict path="/one/" component={About}/>

Route Property Strict

path location.pathname matches?

/one/ /one no

/one/ /one/ yes

/one/ /one/two yes

19

workshops.de

Route Property Exact

<Route exact path="/one" component={About}/>

path location.pathname exact matches?

/one /one/two true no

/one /one/two false yes

20

workshops.de

<Route exact strict path="/one" component={About}/>

Route Properties Strict + Exact

path location.pathname matches?

/one /one yes

/one /one/ no

/one /one/two no

21

workshops.de

Route Passing Props

<Route path="/home" render={() => <Home myProp={someVar}/>}/>

Use “render” for more flexibility like passing props:

22

<Route path="/home"><Home myProp={someVar}/></Route>

Use children:

workshops.de

Switch
render only the first matching route (one at a time)

23

workshops.de

Normally, React Router would render all

<Route />s which match the given path.

24

workshops.de

<code>Without Switch
Without <Switch /> every component of every matching route is
rendered.

import { Route, Switch } from "react-router-dom";

return (
 <div>
 <Route exact path="/"><Home /></Route>
 <Route path="/about"><About /></Route>
 <Route path="/:user"><User /></Route>
 <Route><NoMatch /></Route>
 </div>
);

25

/about

workshops.de

<code>Using Switch
<Switch /> can help us here

import { Route, Switch } from "react-router-dom";

return (
 <Switch>
 <Route exact path="/"><Home /></Route>
 <Route path="/about"><About /></Route>
 <Route path="/:user"><User /></Route>
 <Route><NoMatch /></Route>
 </Switch>
);

26

workshops.de

<code>Using Switch
With <Switch /> only route is rendered at a time

import { Route, Switch } from "react-router-dom";

return (
 <Switch>
 <Route exact path="/"><Home /></Route>
 <Route path="/about"><About /></Route>
 <Route path="/:user"><User /></Route>
 <Route><NoMatch /></Route>
 </Switch>
);

27

/about

workshops.de

Link

28

workshops.de

The primary way to allow users to navigate

around your application.

29

workshops.de

The Link Component

￫ <Link /> will render a fully accessible anchor tag with the proper

href.

￫ Property: to="/my/route"

￫ <NavLink /> adds properties to highlight the current route

￫ activeClassName

￫ activeStyle
import {

 Link, NavLink

} from 'react-router-dom'

30

workshops.de

<code>Using Link
With <Link> you’re able to create links to routes

<Router>
 <div>

 <Link to="/home">Home</Link>
 <Link to="/about">About</Link>

<Switch>
 <Route path="/home" ><Home /></Route>
 <Route path="/about" ><About /></Route>

 <Redirect to=”/home” />
</Switch>

 </div>
</Router>

31

workshops.de

Task
Install and use React-Router v5

32

workshops.de

Route match and
Params

33

workshops.de

A match object contains information about how a

<Route path> matched the URL.

34

workshops.de

Detail of a books

A detailed View of a book including the

Abstract, Number of Pages, Publisher and

ISBN.

Book details should be available under

/books/:isbn

35

workshops.de

<code>Read Params In A Component
Read the params via the useParams hook

import { useParams } from "react-router-dom";

const BookDetails: React.FC = () => {
 const { isbn } = useParams<{ isbn: string }>();
 // use the isbn to load your data
 return <p>ISBN: {isbn}</p>;
};

36

Type for expected
params, following the
URL (/books/:isbn).

workshops.de

match objects
￫ <Route exact path="/books/:isbn" component={BookDetail}/>

￫ Access the match object inside a component via useRouteMatch()

￫ Match properties

￫ params - (object) Key/value pairs

￫ isExact - (bool) true if the entire URL was matched (no trailing characters)

￫ path - (string) The path pattern used to match. Useful for building nested <Route>s

■ e.g. books/:isbn

￫ url - (string) The matched portion of the URL. Useful for building nested <Link>s

■ e.g. books/572394732832

37

workshops.de

<code>Read match information in a component
Read the match information and params via the useRouteMatch hook

import { useRouteMatch } from "react-router-dom";

const BookDetails: React.FC = () => {
 const {
 params: { isbn },
 // other match properties
 } = useRouteMatch<{ isbn: string }>();
 // use the isbn to load your data
 return <p>ISBN: {isbn}</p>;
};

38

Type for expected
params, following the
URL (/books/:isbn).

Other information like
path, url, isExact.

workshops.de

Task
Create a route for a basic
BookDetails component

39

workshops.de

Task
Show data in BookDetails

40

workshops.de

Nested routes

41

workshops.de

Use <Route> inside a component that is

mounted via <Route>

42

workshops.de

Nested routes can help with…

● Code splitting: routes which might never be hit are not in the main

bundle

● Code organization: different teams can work on different parts of an

application without interfering

43

💡

workshops.de

<code>Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.
const BookDetails: React.FC = () => {
 const { path, url, params } = useRouteMatch<{ isbn: string }>();
 const book = useBook(params.isbn);
 return (
 <>
 <Route exact path={path}>
 <Book book={book} />
 <Link to={`${url}/edit`}>Edit</Link>
 </Route>
 <Route exact path={`${path}/edit`}>
 <EditBook book={book} />
 </Route>
 </>
);
};

44

Screen gets displayed when
going to /books/:isbn.

workshops.de

<code>Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.
const BookDetails: React.FC = () => {
 const { path, url, params } = useRouteMatch<{ isbn: string }>();
 const book = useBook(params.isbn);
 return (
 <>
 <Route exact path={path}>
 <Book book={book} />
 <Link to={`${url}/edit`}>Edit</Link>
 </Route>
 <Route exact path={`${path}/edit`}>
 <EditBook book={book} />
 </Route>
 </>
);
};

45

Get match object with
params, path and url.

workshops.de

<code>Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.
const BookDetails: React.FC = () => {
 const { path, url, params } = useRouteMatch<{ isbn: string }>();
 const book = useBook(params.isbn);
 return (
 <>
 <Route exact path={path}>
 <Book book={book} />
 <Link to={`${url}/edit`}>Edit</Link>
 </Route>
 <Route exact path={`${path}/edit`}>
 <EditBook book={book} />
 </Route>
 </>
);
};

46

Use path to declare nested routes
(path === "/books/:isbn").

workshops.de

<code>Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.
const BookDetails: React.FC = () => {
 const { path, url, params } = useRouteMatch<{ isbn: string }>();
 const book = useBook(params.isbn);
 return (
 <>
 <Route exact path={path}>
 <Book book={book} />
 <Link to={`${url}/edit`}>Edit</Link>
 </Route>
 <Route exact path={`${path}/edit`}>
 <EditBook book={book} />
 </Route>
 </>
);
};

47

Use url to declare correct link
(url === "/books/123").

workshops.de

<code>Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.
const BookDetails: React.FC = () => {
 const { path, url, params } = useRouteMatch<{ isbn: string }>();
 const book = useBook(params.isbn);
 return (
 <>
 <Route exact path={path}>
 <Book book={book} />
 <Link to={`${url}/edit`}>Edit</Link>
 </Route>
 <Route exact path={`${path}/edit`}>
 <EditBook book={book} />
 </Route>
 </>
);
};

48

Use exact to enforce an exact
match, otherwise the order matters.

workshops.de

<code>Example: Nested route for editing a book
Update the main route declaration in App.tsx to not be an exact match
for /books/:isbn anymore.

<Switch>
 <Route exact path="/books">
 <BooksScreen />
 </Route>
 <Route exact path="/books/:isbn">
 <BookScreen />
 </Route>
</Switch>

49

Can’t be exact anymore, as nested
routes wouldn’t match otherwise.

workshops.de

<code>Example: Nested route for editing a book
Update the main route declaration in App.tsx to not be an exact match
for /books/:isbn anymore.

<Switch>
 <Route exact path="/books">
 <BooksScreen />
 </Route>
 <Route path="/books/:isbn">
 <BookScreen />
 </Route>
</Switch>

50

Handles multiple routes now:
● /books/:isbn
● /books/:isbn/edit
● /books/:isbn/… ?

workshops.de

Task
Create a nested route to edit a book

51

workshops.de

Be careful...

● Nested routes can help with code splitting and code organisation or

let teams work independently from each other.

● You lose the overview over all routes in one place: Some routes might

be declared somewhere deep in your application.

52

⚠

