S

Workshop
React Router

workshops.de

React Router

workshops.de

A SPA handles routing in most cases by itself.

A routing library helps with managing the routing

ogic/state.

Frameworks like Next.js or Blitz.js handle routing

for us — it’s build into the framework.

Why / What you’ll learn

> How to define Routes in a declarative way

> Using react-router-dom to build a more complex application

The router maps URLs to components / screens

/books <BookList />

React Router

React Router is a routing library for React.

It’s “just” React — everything is a component anad

follows the principles we've learned so far.

https://v5.reactrouter.com/

The React Router Module

> Declarative routing for React
> Uses React elements to define routes

> Components of React Router in the react-router-dom module:

> npm install react-router-dom@5
npm install --save-dev @types/react-router-dom@5

> import {Router} from 'react-router-dom'

<Router />

Primary component of React Router. It keeps

your Ul and the URL in sync.

10

Router Implementations

<BrowserRouter /> for HTML5-History Routing
<HashRouter /> for Hash-Routing (older browsers)
<MemoryRouter /> for ReactNative and Tests

<StaticRouter /> for ServerSideRendering

import {
BrowserRouter as Router,
} from 'react-router-dom’

11

Router Element In Action

Just wrap your App inside of your Router-Component

import {BrowserRouter as Router} from 'react-router-dom';

ReactDOM. render(
<Router>
<App />
</Router>,
document .getElementById('root')

b5

12

Router Element In Action

Just wrap your App inside of your Router-Component

import {BrowserRouter as Router} from 'react-router-dom';

ReactDOM. render(
Needs to be at the top of the

<Router> e 0
<A > component tree, as |
o provides the routing context.
</Router>,

document .getElementById('root')
)

Route

A <Route /> is used to declaratively map routes

to your application's component hierarchy.

15

The Route Component

> Render some Ul when a location matches the route's path

> Route Properties

> path
> exact import {
| Route,
> strict } from 'react-router-dom'

> component

16

The Route Component

With <Route> you're able to insert components on path-match

<main>
<Route exact path="/"><Home /></Route>
<Route path="/about"><About /></Route>
</main>

17

Route Property Path

<Route path="/users/" component={User}/>

path location.pathname
Jusers/ Jusers/1
Jusers/ Jusers/max
/users/ Jusers/max/profile/tip

yes

yes

yes

matches?

18

Route Property Strict

<Route strict path="/one/" component={About}/>

path location.pathname
Jone/ Jone
/one/ /one/
Jone/ Jone/two

no

yes

yes

matches?

19

Route Property Exact

<Route exact path="/one" component={About}/>

path location.pathname exact
/one /one/two true
/one /one/two false

matches?

no

yes

20

Route Properties Strict + Exact

<Route exact strict path="/one" component={About}/>

path location.pathname
/one /one
/one /one/
/one /one/two

matches?

yes

no

no

21

Route Passing Props

Use “render” for more flexibility like passing props:

<Route path="/home" render={() => <Home myProp={someVar}/>}/>

Use children:

<Route path="/home"><Home myProp={someVar}/></Route>

22

Switch

render only the first matching route (one at a time)

23

Normally, React Router would render all

<Route />s which match the given path.

24

Without Switch

Without <Switch /> every component of every matching route is
rendered.

import { Route, Switch } from "react-router-dom";

return (

<div>
<Route exact path="/"><Home /></Route>
<Route path="/about"><About /></Route>
<Route path="/:user"><User M /about

<Route><NoMatch /></Route>

</div>

)2

25

Using Switch

<Switch /> can help us here

import { Route, Switch } from "react-router-dom";

return (
<Switch>
<Route exact path="/"><Home /></Route>
<Route path="/about"><About /></Route>
<Route path="/:user"><User /></Route>
<Route><NoMatch /></Route>
</Switch>

)2

26

Using Switch

With <Switch /> only route is rendered at a time

import { Route, Switch } from "react-router-dom";

return (
<Switch>
<Route exact path="/"><Home /></Route>

<Route path="/about"><About /></Route><~__‘__‘N_‘~§‘ﬁ
<Route path="/:user"><User /></Routey <

/about

</Switch>
)2

27

Link

The primary way to allow users to navigate

around your application.

29

The Link Component

> <Link /> will render a fully accessible anchor tag with the proper
hretf.
> Property: to="/my/route"
> <NavlLink /> adds properties to highlight the current route

> activeClassName

import {
Link, NavLink
} from 'react-router-dom’

> activeStyle

Using Link
With <Link> you’re able to create links to routes

<Router>
<div>

<Link to="/home">Home</Link></1i>
<Link to="/about">About</Link></1i>

<Switch>
<Route path="/home" ><Home /></Route>
<Route path="/about™ ><About /></Route>
<Redirect to="”/home” />
</Switch>
</div>
</Router>

31

lask

Install and use React-Router v5

workshops.de

Route match and
Params

A match object contains information about how a
<Route path> matched the URL.

34

Detail of a books

A detailed View of a book including the
Abstract, Number of Pages, Publisher and
ISBN.

Book details should be available under
/books/:isbn

BookMonkey Home Books Login

Design Patterns

Elements of Reusable Object-Oriented Software von
Erich Gamma/ Richard Helm / Ralph E. Johnson / John
Vlissides

Capturing a wealth of experience about the design of object-
oriented software, four top-notch designers present a
catalog of simple and succinct solutions to commonly
occurring design problems. Previously undocumented, these
23 patterns allow designers to create more flexible, elegant,
and ultimately reusable designs without having to
rediscover the design solutions themselves.

Das Buch hat 395 Seiten und wirde bei Addison-Wesley

veroffentlicht
ISBN: 978-0-20163-361-0

Buch bearbeiten

35

Read Params In A Component

Read the params via the useParams hook

import { useParams } from "react-router-dom";

const BookDetails: React.FC = () => {
const { isbn } = useParams<{ isbn: string }>();

return <p>ISBN: {isbn}</p>;
}s

Type for expected
params, following the
URL (/books/ :isbn).

36

match objects

> <Route exact path="/books/:isbn" component={BookDetail}/>
> Access the match object inside a component via useRouteMatch()

> Match properties
> params - (object) Key/value pairs
> isExact - (bool) true if the entire URL was matched (no trailing characters)
> path - (string) The path pattern used to match. Useful for building nested <Route>s
m e.g. books/:isbn
> url - (string) The matched portion of the URL. Useful for building nested <Link>s
m e.g. books/572394732832

37

Read match information in a component

Read the match information and params via the useRouteMatch hook

import { useRouteMatch } from "react-router-dom";

Other information like
path, url, isExact.

const BookDetails: React.FC = () => {
const {
params: { isbn },

} = useRouteMatch<{ isbn: string }>();

return <p>ISBN: {isbn}</p>;
}s

Type for expected
params, following the
URL (/books/ :isbn).

38

lask

Create a route for a basic
BookDetails component

workshops.de

lask

Show data in BookDetails

workshops.de

Nested routes

Use <Route> inside a component that is

mounted via <Route>

42

Nested routes can help with...

Code splitting: routes which might never be hit are not in the main
bundle
Code organization: different teams can work on different parts of an

application without interfering

43

Example: Nested route for editing a book
Inside our screen to display book details, we can declare sub-routes e.g.

for editing a book.

const BookDetails: React.FC = () => {

const { path, url, params } = useRouteMatch<{ isbn: string }>();

const book = useBook(params.isbn);
return (
<>
<Route exact path={path}>
<Book book={book} />
<Link to={ ${url}/edit” }>Edit</Link>
</Route>
<Route exact path={" ${path}/edit }>
<EditBook book={book} />
</Route>
</>
)
¥

Screen gets displayed when
going to /books/:isbn.

44

Example: Nested route for editing a book

Inside our screen to display book details, we can declare sub-routes e.g.

for editing a book.

const BookDetails: React.FC = () => {
const { path, url, params } = useRouteMatch<{ isbn: string }>();
const book = useBook(params.isbn);
return (
<>
<Route exact path={path}>
<Book book={book} />
<Link to={ ${url}/edit” }>Edit</Link>
</Route>
<Route exact path={" ${path}/edit }>

<EditBook book={book} />
</Route> Get match object with
</> params, path and url.

)5

i

45

Example: Nested route for editing a book

Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.

const BookDetails: React.FC = () => {
const { path, url, params } = useRouteMatch<{ isbn: string }>();
const book = useBook(params.isbn);
return (
<>
<Route exact path={path}>
<Book book={book} />
<Link to={ ${url}/edit” }>Edit</Link>
</Route>
<Route exact path={"${path}/edit }>

<EditBook book={book} />
</Route> Use path to declare nested routes
</> (path === "/books/:isbn").

)5

i

46

Example: Nested route for editing a book

Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.

const BookDetails: React.FC = () => {
const { path, url, params } = useRouteMatch<{ isbn: string }>();
const book = useBook(params.isbn);
return (
<>
<Route exact path={path}>
<Book book={book} />
<Link to={"${url}/edit” }>Edit</Link>
</Route>
<Route exact path={"${path}/edit

<EditBook book={book} />
</Route> Use url to declare correct link
</> (url === "/books/123").

)5

i

47

Example: Nested route for editing a book

Inside our screen to display book details, we can declare sub-routes e.g.
for editing a book.

const BookDetails: React.FC = () => {
const { path, url, params } = useRouteMatch<{ isbn: string }>();
const book = useBook(params.isbn);
return (
<>
<Route exact path={path}>
<Book book={book} />
<Link to={ ${url}/edit” }>Edit</Link>
</Route>
<Route exact path={"${path}/edit }>

<EditBook book={book} />
</Route> Use exact to enforce an exact
</> match, otherwise the order matters.

)5

i

48

Example: Nested route for editing a book
Update the main route declaration in App . tsx to not be an exact match

for /books/ :isbn anymore.

<Switch>
<Route exact path="/books">
<BooksScreen />
</Route>
<Route exaet path="/books/:isbn">
<BookScreen />
</Route>
</Switch>

Can’t be exact anymore, as nested
routes wouldn’t match otherwise.

49

Example: Nested route for editing a book

Update the main route declaration in App . tsx to not be an exact match
for /books/ :isbn anymore.

Handles multiple routes now:
< > e /books/:isbn
< exact path="/books"> e /books/:isbn/edit
e /books/:isbn/... ?
< />
</ >
< path="/books/:isbn">
< />
</ >
</ >

50

lask

Create a nested route to edit a book

workshops.de

Be careful...

Nested routes can help with code splitting and code organisation or
let teams work independently from each other.
You lose the overview over all routes in one place: Some routes might

be declared somewhere deep in your application.

52

